<progress id="blzj5"></progress>
<menuitem id="blzj5"><del id="blzj5"><address id="blzj5"></address></del></menuitem><thead id="blzj5"></thead>
<menuitem id="blzj5"><dl id="blzj5"></dl></menuitem>
<thead id="blzj5"><dl id="blzj5"></dl></thead>
<var id="blzj5"><dl id="blzj5"></dl></var>
<listing id="blzj5"><dl id="blzj5"><noframes id="blzj5">
<thead id="blzj5"><dl id="blzj5"></dl></thead><listing id="blzj5"></listing><listing id="blzj5"></listing>
<menuitem id="blzj5"></menuitem>
<ins id="blzj5"></ins>
<thead id="blzj5"><del id="blzj5"><th id="blzj5"></th></del></thead><listing id="blzj5"></listing>
<thead id="blzj5"></thead>
侯睿,韓敏,陳璟,何柳婷,毛騰躍.命名數據網絡中基于信息熵的Interest洪泛攻擊檢測與防御[J].中南民族大學學報自然科學版,2019,(2):273-277
命名數據網絡中基于信息熵的Interest洪泛攻擊檢測與防御
Information entropy-based Interest Flooding Attack detection and defense in Named Data Networking
  
DOI:10.12130/znmdzk.20190222
中文關鍵詞: 命名數據網絡  興趣包泛洪攻擊  信譽值  信息熵
英文關鍵詞: Named Data Networking  Interest Flooding Attack  reputation value  information entropy
基金項目:國家自然科學基金資助項目(60841001);中央高?;究蒲袠I務費專項資金資助項目(CZT19011)
作者單位
侯睿,韓敏*,陳璟,何柳婷,毛騰躍 中南民族大學 計算機科學學院,武漢430074 
摘要點擊次數: 192
全文下載次數: 189
中文摘要:
      在命名數據網絡中,興趣包洪泛攻擊通過向網絡發送大量惡意interest包來消耗網絡資源,從而對NDN造成較大危害.針對目前所提出的IFA攻擊檢測與防御方法存在攻擊模式單一、在應對復雜攻擊模式時效果不明顯等局限.提出一種基于信息熵的改進方法(EIM),該方法通過與NDN路由器相連的用戶的信譽值和信息熵相結合來限制攻擊者發送的惡意interest包,很好地解決了現有方法在應對復雜的攻擊模式時的局限性.仿真結果表明EIM較信息熵方法能夠更有效地緩解IFA.
英文摘要:
      In Named Data Networking (NDN), Interest Flooding Attack (IFA) sends plenty of malicious interest packets into a network to exhaust its resource, thus cause enormous damage. For the current proposed IFA attack detection and defense method, only a single attack mode is involved, so that the effect is not obvious when dealing with complex attack modes. An information Entropy-based Improved Method (EIM) is proposed for IFA in this paper. EIM combines a user’s reputation value and information entropy of the NDN router, which is directly connected to the user, to restrict the malicious interest packet sent by attackers, and solves the limitation of the existing method in dealing with the complex attack mode. Simulation results show that EIM can alleviate IFA more effectively than information entropy method.
查看全文   查看/發表評論  下載PDF閱讀器
關閉
秒速赛车开奖查询结果